organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Triprolidinium dipicrate

A. S. Dayananda,^a Jerry P. Jasinski,^b* James A. Golen,^b H. S. Yathirajan^a and C. R. Raju^c

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and ^cDepartment of Chemistry, PES College of Science, Mandya 571 401, India Correspondence e-mail: jjasinski@keene.edu

Received 16 August 2011; accepted 22 August 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.067; wR factor = 0.192; data-to-parameter ratio = 17.2.

In the tripodinium cation of the title compound {systematic name: 2-[(*E*)-1-(4-methylphenyl)-3-(pyrrolidin-1-ium-1-yl)prop-1-enyl]pyridinium bis(2,4,6-trinitrophenolate)}, $C_{19}H_{24}N_2^+$.-2 $C_6H_2N_3O_7^-$, the N atoms on both the pyrrolidine and pyridinium groups are protonated. The pyrrolidine group adopts a slightly distorted envelope configuration. Strong N-H···O cation-anion hydrogen bonds and weak intermolecular N-H···O interactions link the dication and two anions. In both picrate anions, the nitro groups display rotational disorder over two orientations in a 0.605 (6):0.395 (6) ratio. The crystal packing also features weak intermolecular π - π [centroid-centroid distance = 3.8036 (14) Å] and C-H···O interactions.

Related literature

For anticholinergic properties, see: Salunga *et al.* (1996). For related structures, see: James & Williams (1971, 1974); Parvez & Sabir (1997). For puckering parameters, see: Cremer & Pople (1975). For bond lengths, see: Allen *et al.* (1987).

Experimental

Crystal data

 $\begin{array}{ll} C_{19}H_{24}N_2^{2+}\cdot 2C_6H_2N_3O_7^{-} & b = 12.7489 \ (5) \ \text{\AA} \\ M_r = 736.61 & c = 17.1446 \ (7) \ \text{\AA} \\ \text{Monoclinic, } P_{2_1/n} & \beta = 100.218 \ (4)^\circ \\ a = 15.0542 \ (7) \ \text{\AA} & V = 3238.3 \ (2) \ \text{\AA}^3 \end{array}$

Z = 4Mo $K\alpha$ radiation $\mu = 0.12 \text{ mm}^{-1}$

Data collection

Oxford Diffraction Xcalibur Eos
Gemini diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford
Diffraction, 2010)
$T_{\min} = 0.960, \ T_{\max} = 0.975$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.192$ S = 1.028355 reflections 486 parameters 14 restraints 32796 measured reflections 8355 independent reflections 6144 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.027$

 $0.34 \times 0.23 \times 0.21 \text{ mm}$

T = 173 K

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.63 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.42 \text{ e } \text{\AA}^{-3}$

Table 1		
Judrogon	hand	acomo

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdots O10$	0.85 (2)	1.89 (2)	2.701 (2)	157 (2)
$N1 - H1N \cdots O8$	0.85 (2)	2.44 (2)	3.053 (7)	129 (2)
$N1 - H1N \cdots O8A$	0.85 (2)	2.57 (2)	3.173 (10)	128 (2)
$N2 - H2N \cdots O3$	0.86 (2)	1.85 (2)	2.648 (2)	153 (2)
$C31 - H31A \cdots O11^{i}$	0.95	2.58	3.520 (3)	170
C9−H9A···O11	0.95	2.47	3.174 (3)	131
$C5-H5B\cdots O3^{ii}$	0.99	2.44	3.362 (4)	154
$C5-H5A\cdots O13A^{iii}$	0.99	2.47	3.399 (6)	157
$C4-H4A\cdots O14A^{iv}$	0.99	2.33	3.116 (7)	136
Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2};$ (iv)	$\begin{array}{c} -x + \frac{1}{2}, y - \\ -x + \frac{1}{2}, y + \frac{1}{2}, - \end{array}$	$\frac{1}{2}, -z + \frac{1}{2};$ (ii) $z + \frac{1}{2}.$) $-x + \frac{3}{2}, y - \frac{1}{2}, $	$-z + \frac{1}{2};$ (iii)

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

ASD thanks the University of Mysore for research facilities and HSY thanks R. L. Fine Chemicals, Bangalore, for a gift sample of triprolidine hydrochloride. JPJ acknowledges the NSF-MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5298).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- James, M. N. G. & Williams, G. J. B. (1971). J. Med. Chem. 14, 670-675.
- James, M. N. G. & Williams, G. J. B. (1974). Can. J. Chem. 52, 1880-1888.
- Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Parvez, M. & Sabir, A. P. (1997). Acta Cryst. C53, 679-681.
- Salunga, T. L., Han, X. Y., Wong, S. M., Takeuchi, H., Matsunami, K., Upton, C. & Mercer, A. D. (1996). *Eur. J. Pharmacol.* 304, 163–171.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2011). E67, o2502 [doi:10.1107/S160053681103457X]

Triprolidinium dipicrate

A. S. Dayananda, J. P. Jasinski, J. A. Golen, H. S. Yathirajan and C. R. Raju

Comment

Triprolidine, is a histamine H1 antagonist that competes with histamine for the normal H1-receptor sites on effector cells of the gastrointestinal tract, blood vessels and respiratory tract. Triprolidine has anticholinergic properties and is used to combat the symptoms associated with allergies and is sometimes combined with other cold medications designed to provide general relief for flu-like symptoms (Salunga *et al.*, 1996). The crystal structures of triprolidine hydrochloride (James & Williams, 1971), triprolidine hydrochloride monohydrate (James & Williams, 1974) and triprolidine tetrachlorocuprate (II) (Parvez & Sabir, 1997) have been reported. In view of the importance of the title compound, this paper reports the crystal structure of (I), $C_{19}H_{24}N_2^+$. $C_{12}H_4N_6O_{14}^-$.

In the tripodinium cation of the title compound [systematic name: 2-[(E)-1-(4-methylphenyl)-3-pyrrolidin-1-yl-prop-1enyl]pyridinium bis(2,4,6-trinitrophenolate)], $C_{19}H_{24}N_2^+$. $C_{12}H_4N_6O_{14}^-$., the N atoms on the pyrrolidine and pyridinium groups are protonated (Fig.1). The pyrrolidine group adopts a slightly distorted envelope configuration with puckering parametes Q = 0.288 (3)Å; φ = 32.2 (6)° (Cremer & Pople, 1975). Strong N—H···O cation-anion hydrogen bonds and weak N—H···O intermolecular interactions (Table 1) link the dication and two anions (Fig. 2). Bond lengths are in normal ranges (Allen *et al.*, 1987). In both picrate anions, three of the nitro groups are rotationally disordered over two positions in a ratio of 0.605 (6): 0.395 (6) [O4A & O5A (0.395 (6), O4 & O5 (0.605 (6); O8A & O9A (0.395 (6), O8 & O9 (0.605 (6); O13A & O14A (0.605 (6), O13 & O14 (0.395 (6)]. The crystal packing is stabilized by weak intermolecular π - π [Cg4—Cg5 (3/2-x, 1/2+y, 1/2-z) centroid distances = 3.8036 (14)Å; Cg4 = C26—C31 & Cg5 = C20—C25] and C—H···O interactions forming chains along the *a* axis.

Experimental

Triprolidine hydrochloride (3.15 g, 0.01 mol) was dissolved in 10 ml of methanol and picric acid (2.29 g, 0.01 mol) was dissolved in 10 ml of methanol. Both the solutions were mixed and stirred in a beaker at 333 K for 30 minutes. The mixture was kept aside for three days at room temperature. The formed salt was filtered & dried in a vaccum desiccator over phosphorous pentoxide. The compound was recrystallized from dimethyl sulphoxide by slow evaporation (m.p: 466-468 K).

Refinement

The oxygen atoms of three nitro groups on picrate cations are disordered over two positions in a ratio of 0.605 (6):0.395 (6).

H1N and H2N were located by a Fourier map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with C–H lengths of 0.95 Å (CH), 0.99 Å (CH₂) or 0.98 Å (CH₃). The isotropic displacement parameters for these atoms were set to 1.2 (CH, CH₂) or 1.5 (CH₃) times U_{eq} of the parent atom.

Figures

Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme and 30% probability displacement ellipsoids.

Fig. 2. Packing diagram of the title compound, viewed down the b axis. Dashed lined indicate N—H···O hydrogen bonds.

2-[(*E*)-1-(4-methylphenyl)-3-(pyrrolidin-1-ium- 1-yl)prop-1-enyl]pyridinium bis(2,4,6-trinitrophenolate)

Crystal data

$C_{19}H_{24}N_2{}^{2+}\cdot 2C_6H_2N_3O_7{}^-$	F(000) = 1528
$M_r = 736.61$	$D_{\rm x} = 1.511 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 11024 reflections
a = 15.0542 (7) Å	$\theta = 3.2 - 32.3^{\circ}$
b = 12.7489 (5) Å	$\mu = 0.12 \text{ mm}^{-1}$
c = 17.1446 (7) Å	T = 173 K
$\beta = 100.218 \ (4)^{\circ}$	Block, colorless
$V = 3238.3 (2) \text{ Å}^3$	$0.34 \times 0.23 \times 0.21 \text{ mm}$
Z = 4	

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer	8355 independent reflections
Radiation source: Enhance (Mo) X-ray Source	6144 reflections with $I > 2\sigma(I)$

graphite	$R_{\rm int} = 0.027$
Detector resolution: 16.1500 pixels mm ⁻¹	$\theta_{\text{max}} = 28.7^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
ω scans	$h = -20 \rightarrow 20$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010)	$k = -17 \rightarrow 17$
$T_{\min} = 0.960, \ T_{\max} = 0.975$	$l = -22 \rightarrow 23$
32796 measured reflections	

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.087P)^2 + 2.0922P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.019$
$\Delta \rho_{max} = 0.63 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.42 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
01	0.92233 (17)	0.70372 (18)	0.04819 (15)	0.0835 (7)	
O2	0.82310 (14)	0.65125 (19)	0.11427 (12)	0.0733 (6)	
03	0.88982 (12)	0.56044 (14)	0.25150 (11)	0.0561 (4)	
O4A	0.9819 (13)	0.4781 (13)	0.3699 (8)	0.0957 (11)	0.395 (6)
O4	0.9885 (8)	0.4552 (8)	0.3767 (5)	0.0957 (11)	0.605 (6)
O5A	1.0956 (6)	0.3773 (8)	0.3664 (5)	0.0957 (11)	0.395 (6)
05	1.0589 (4)	0.3329 (5)	0.3390 (3)	0.0957 (11)	0.605 (6)
O6	1.22955 (16)	0.3894 (2)	0.13260 (14)	0.0886 (8)	
07	1.17901 (14)	0.49452 (17)	0.03706 (11)	0.0650 (5)	
O8A	0.3039 (6)	0.1518 (9)	0.1006 (6)	0.0706 (12)	0.395 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

08	0.3337 (4)	0.1253 (5)	0.1125 (4)	0.0706 (12)	0.605 (6)
O9A	0.2177 (6)	0.0413 (8)	0.1356 (6)	0.0706 (12)	0.395 (6)
09	0.2512 (4)	0.0092 (5)	0.1496 (3)	0.0706 (12)	0.605 (6)
O10	0.41754 (11)	0.24944 (14)	0.22274 (9)	0.0496 (4)	
011	0.42811 (13)	0.42582 (16)	0.31111 (14)	0.0662 (5)	
012	0.42006 (17)	0.3801 (2)	0.43080 (13)	0.0884 (8)	
O13	0.1432 (6)	0.1580 (6)	0.4551 (6)	0.0708 (7)	0.395 (6)
O13A	0.1624 (3)	0.1919 (4)	0.4605 (4)	0.0708 (7)	0.605 (6)
014	0.0765 (6)	0.0945 (9)	0.3400 (4)	0.0708 (7)	0.395 (6)
O14A	0.0865 (4)	0.0942 (5)	0.3683 (3)	0.0708 (7)	0.605 (6)
N1	0.48222 (11)	0.27782 (13)	0.08706 (9)	0.0334 (4)	
H1N	0.4503 (15)	0.2601 (19)	0.1214 (12)	0.040*	
N2	0.77333 (12)	0.47437 (14)	0.33144 (10)	0.0385 (4)	
H2N	0.8096 (15)	0.483 (2)	0.2986 (13)	0.046*	
N3	0.89847 (15)	0.64836 (17)	0.09876 (12)	0.0513 (5)	
N4	1.02831 (16)	0.42310 (19)	0.32931 (13)	0.0576 (6)	
N5	1.17391 (15)	0.45175 (18)	0.10008 (13)	0.0532 (5)	
N6	0.27963 (15)	0.10320 (18)	0.15556 (12)	0.0529 (5)	
N7	0.40122 (14)	0.36817 (18)	0.35907 (13)	0.0545 (5)	
N8	0.14695 (19)	0.1484 (2)	0.39024 (16)	0.0692 (7)	
C1	0.46460 (15)	0.20288 (18)	0.01772 (12)	0.0409 (5)	
H1A	0.5179	0.1975	-0.0085	0.049*	
H1B	0.4493	0.1321	0.0351	0.049*	
C2	0.3856 (2)	0.2509 (2)	-0.03715 (16)	0.0621 (7)	
H2A	0.3894	0.2359	-0.0931	0.075*	
H2B	0.3280	0.2226	-0.0259	0.075*	
C3	0.3918 (2)	0.3664 (3)	-0.0214(2)	0.0748 (9)	
НЗА	0.4153	0.4027	-0.0646	0.090*	
H3B	0.3314	0.3951	-0.0186	0.090*	
C4	0.4532 (3)	0.3821 (2)	0.05422 (19)	0.0839 (11)	
H4A	0.4219	0.4208	0.0916	0.101*	
H4B	0.5063	0.4236	0.0459	0.101*	
C5	0.57653 (15)	0.2711 (2)	0.12893 (15)	0.0531 (6)	
H5A	0.6172	0.2871	0.0910	0.064*	
H5B	0.5889	0.1982	0.1477	0.064*	
C6	0.59780 (15)	0.3441 (2)	0.19836 (13)	0.0452 (5)	
H6A	0.5496	0.3785	0.2170	0.054*	
C7	0.68177 (14)	0.36208 (17)	0.23445 (11)	0.0363 (4)	
C8	0.69781 (13)	0.41772 (16)	0.31109 (11)	0.0343 (4)	
C9	0.64044 (16)	0.4112 (2)	0.36606 (13)	0.0447 (5)	
H9A	0.5864	0.3714	0.3540	0.054*	
C10	0.66114 (19)	0.4620 (2)	0.43778 (14)	0.0545 (6)	
H10A	0.6211	0.4578	0.4748	0.065*	
C11	0.7398 (2)	0.5186 (2)	0.45588 (13)	0.0536 (6)	
H11A	0.7553	0.5533	0.5055	0.064*	
C12	0.79475 (18)	0.52380 (19)	0.40122 (13)	0.0496 (6)	
H12A	0.8492	0.5630	0.4126	0.059*	
C13	0.76235 (13)	0.31890 (16)	0.20509 (11)	0.0343 (4)	
C14	0.81005 (15)	0.23621 (19)	0.24497 (12)	0.0434 (5)	

H14A	0.7913	0.2075	0.2906	0.052*
C15	0.88497 (16)	0.19494 (19)	0.21895 (14)	0.0465 (5)
H15A	0.9171	0.1386	0.2473	0.056*
C16	0.91379 (14)	0.23425 (17)	0.15237 (13)	0.0395 (5)
C17	0.86463 (15)	0.31561 (19)	0.11187 (13)	0.0436 (5)
H17A	0.8822	0.3426	0.0653	0.052*
C18	0.79042 (15)	0.35835 (18)	0.13792 (13)	0.0418 (5)
H18A	0.7586	0.4150	0.1097	0.050*
C19	0.99617 (17)	0.1905 (2)	0.12528 (17)	0.0578 (6)
H19A	0.9904	0.1999	0.0679	0.087*
H19B	1.0017	0.1156	0.1381	0.087*
H19C	1.0500	0.2276	0.1522	0.087*
C20	0.96436 (15)	0.57494 (16)	0.14058 (12)	0.0378 (4)
C21	0.95360 (15)	0.53588 (16)	0.21766 (13)	0.0399 (5)
C22	1.02623 (16)	0.46581 (18)	0.25059 (13)	0.0430 (5)
C23	1.09501 (16)	0.43644 (18)	0.21281 (14)	0.0452 (5)
H23A	1.1395	0.3880	0.2369	0.054*
C24	1.09888 (15)	0.47827 (17)	0.13884 (13)	0.0414 (5)
C25	1.03443 (15)	0.54831 (17)	0.10349 (12)	0.0389 (4)
H25A	1.0386	0.5780	0.0535	0.047*
C26	0.28089 (15)	0.15781 (17)	0.22957 (12)	0.0396 (5)
C27	0.35152 (13)	0.23267 (16)	0.25547 (11)	0.0356 (4)
C28	0.34105 (14)	0.28230 (18)	0.32932 (12)	0.0403 (5)
C29	0.27778 (17)	0.25319 (19)	0.37352 (13)	0.0472 (6)
H29A	0.2772	0.2848	0.4236	0.057*
C30	0.21500 (17)	0.1777 (2)	0.34464 (14)	0.0492 (6)
C31	0.21513 (16)	0.13026 (18)	0.27218 (14)	0.0453 (5)
H31A	0.1706	0.0796	0.2521	0.054*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0933 (16)	0.0729 (14)	0.0937 (16)	0.0258 (12)	0.0423 (13)	0.0435 (12)
O2	0.0577 (12)	0.0972 (16)	0.0691 (12)	0.0240 (11)	0.0224 (10)	0.0111 (11)
O3	0.0602 (11)	0.0571 (10)	0.0597 (10)	-0.0013 (8)	0.0343 (9)	0.0068 (8)
O4A	0.126 (2)	0.110 (4)	0.0594 (17)	0.054 (2)	0.0387 (17)	0.0402 (14)
O4	0.126 (2)	0.110 (4)	0.0594 (17)	0.054 (2)	0.0387 (17)	0.0402 (14)
O5A	0.126 (2)	0.110 (4)	0.0594 (17)	0.054 (2)	0.0387 (17)	0.0402 (14)
O5	0.126 (2)	0.110 (4)	0.0594 (17)	0.054 (2)	0.0387 (17)	0.0402 (14)
O6	0.0714 (14)	0.116 (2)	0.0838 (15)	0.0450 (14)	0.0276 (12)	0.0182 (14)
O7	0.0716 (13)	0.0776 (13)	0.0537 (10)	0.0064 (10)	0.0325 (9)	-0.0010 (9)
O8A	0.077 (3)	0.083 (3)	0.058 (2)	-0.030 (2)	0.030 (2)	-0.0174 (18)
O8	0.077 (3)	0.083 (3)	0.058 (2)	-0.030 (2)	0.030 (2)	-0.0174 (18)
O9A	0.077 (3)	0.083 (3)	0.058 (2)	-0.030 (2)	0.030 (2)	-0.0174 (18)
O9	0.077 (3)	0.083 (3)	0.058 (2)	-0.030 (2)	0.030 (2)	-0.0174 (18)
O10	0.0442 (9)	0.0685 (11)	0.0417 (8)	-0.0085 (8)	0.0227 (7)	-0.0043 (7)
O11	0.0522 (11)	0.0573 (11)	0.0923 (15)	-0.0053 (9)	0.0221 (10)	-0.0129 (11)
O12	0.0864 (16)	0.1094 (19)	0.0609 (12)	0.0143 (14)	-0.0106 (11)	-0.0316 (13)

O13	0.0794 (16)	0.0789 (14)	0.0695 (15)	0.0012 (12)	0.0548 (18)	0.025 (2)
O13A	0.0794 (16)	0.0789 (14)	0.0695 (15)	0.0012 (12)	0.0548 (18)	0.025 (2)
O14	0.0794 (16)	0.0789 (14)	0.0695 (15)	0.0012 (12)	0.0548 (18)	0.025 (2)
O14A	0.0794 (16)	0.0789 (14)	0.0695 (15)	0.0012 (12)	0.0548 (18)	0.025 (2)
N1	0.0337 (8)	0.0413 (9)	0.0275 (7)	-0.0007 (7)	0.0115 (6)	-0.0027 (6)
N2	0.0427 (10)	0.0439 (9)	0.0312 (8)	-0.0069 (8)	0.0131 (7)	-0.0020 (7)
N3	0.0564 (12)	0.0488 (11)	0.0513 (11)	0.0073 (9)	0.0169 (10)	0.0010 (9)
N4	0.0621 (14)	0.0641 (14)	0.0504 (12)	0.0035 (11)	0.0199 (10)	0.0177 (10)
N5	0.0503 (12)	0.0612 (13)	0.0506 (11)	0.0047 (10)	0.0161 (10)	-0.0064 (10)
N6	0.0548 (12)	0.0615 (13)	0.0462 (10)	-0.0188 (10)	0.0193 (9)	-0.0072 (9)
N7	0.0426 (11)	0.0619 (13)	0.0572 (12)	0.0133 (10)	0.0038 (10)	-0.0164 (11)
N8	0.0687 (16)	0.0702 (15)	0.0831 (17)	0.0250 (13)	0.0529 (14)	0.0322 (13)
C1	0.0466 (12)	0.0449 (11)	0.0322 (9)	-0.0044 (9)	0.0094 (9)	-0.0069 (8)
C2	0.0660 (17)	0.0691 (17)	0.0445 (13)	-0.0034 (13)	-0.0085 (12)	0.0011 (12)
C3	0.0715 (19)	0.0651 (18)	0.077 (2)	0.0079 (15)	-0.0153 (16)	0.0112 (15)
C4	0.133 (3)	0.0419 (14)	0.0646 (17)	0.0206 (17)	-0.0165 (19)	-0.0034 (13)
C5	0.0363 (11)	0.0741 (17)	0.0498 (13)	0.0015 (11)	0.0102 (10)	-0.0227 (12)
C6	0.0361 (11)	0.0600 (14)	0.0414 (11)	-0.0013 (10)	0.0120 (9)	-0.0148 (10)
C7	0.0358 (10)	0.0438 (11)	0.0314 (9)	-0.0020 (8)	0.0118 (8)	-0.0038 (8)
C8	0.0334 (10)	0.0390 (10)	0.0323 (9)	0.0011 (8)	0.0107 (8)	0.0012 (8)
C9	0.0409 (11)	0.0579 (13)	0.0390 (10)	-0.0003 (10)	0.0173 (9)	0.0013 (10)
C10	0.0634 (16)	0.0695 (16)	0.0365 (11)	0.0107 (13)	0.0247 (11)	0.0009 (11)
C11	0.0757 (18)	0.0528 (14)	0.0334 (10)	0.0053 (12)	0.0124 (11)	-0.0094 (10)
C12	0.0606 (15)	0.0464 (12)	0.0405 (11)	-0.0087 (11)	0.0057 (10)	-0.0055 (9)
C13	0.0305 (9)	0.0427 (11)	0.0307 (9)	-0.0043 (8)	0.0080 (7)	-0.0061 (8)
C14	0.0442 (12)	0.0559 (13)	0.0307 (9)	0.0012 (10)	0.0081 (9)	0.0037 (9)
C15	0.0438 (12)	0.0508 (13)	0.0441 (11)	0.0097 (10)	0.0055 (9)	0.0043 (10)
C16	0.0326 (10)	0.0449 (11)	0.0414 (10)	-0.0023 (8)	0.0073 (8)	-0.0108 (9)
C17	0.0431 (12)	0.0525 (13)	0.0393 (10)	-0.0011 (10)	0.0185 (9)	0.0025 (9)
C18	0.0380 (11)	0.0482 (12)	0.0419 (11)	0.0028 (9)	0.0142 (9)	0.0072 (9)
C19	0.0445 (13)	0.0637 (16)	0.0689 (16)	0.0064 (12)	0.0195 (12)	-0.0130 (13)
C20	0.0415 (11)	0.0345 (10)	0.0388 (10)	-0.0045 (8)	0.0106 (8)	-0.0029 (8)
C21	0.0454 (11)	0.0355 (10)	0.0415 (10)	-0.0101 (9)	0.0150 (9)	-0.0034 (8)
C22	0.0504 (13)	0.0427 (11)	0.0371 (10)	-0.0085 (9)	0.0110 (9)	0.0032 (9)
C23	0.0468 (12)	0.0443 (12)	0.0436 (11)	-0.0016 (9)	0.0057 (10)	0.0007 (9)
C24	0.0420 (11)	0.0445 (11)	0.0393 (10)	-0.0032 (9)	0.0119 (9)	-0.0087 (9)
C25	0.0452 (11)	0.0396 (11)	0.0333 (9)	-0.0069 (9)	0.0110 (9)	-0.0046 (8)
C26	0.0403 (11)	0.0445 (11)	0.0371 (10)	0.0021 (9)	0.0149 (9)	0.0050 (8)
C27	0.0339 (10)	0.0432 (11)	0.0316 (9)	0.0058 (8)	0.0115 (8)	0.0052 (8)
C28	0.0385 (11)	0.0459 (11)	0.0380 (10)	0.0119 (9)	0.0109 (8)	0.0003 (9)
C29	0.0532 (13)	0.0560 (13)	0.0369 (10)	0.0233 (11)	0.0205 (10)	0.0074 (10)
C30	0.0509 (13)	0.0522 (13)	0.0531 (13)	0.0174 (11)	0.0328 (11)	0.0201 (11)
C31	0.0415 (11)	0.0444 (12)	0.0540 (13)	0.0032 (9)	0.0198 (10)	0.0116 (10)

Geometric parameters (Å, °)

O1—N3	1.220 (3)	С5—Н5А	0.9900
O2—N3	1.211 (3)	С5—Н5В	0.9900
O3—C21	1.247 (3)	C6—C7	1.325 (3)

O4A—N4	1.280 (11)	С6—Н6А	0.9500
O4—N4	1.166 (7)	С7—С8	1.475 (3)
O5A—N4	1.242 (9)	C7—C13	1.498 (3)
O5—N4	1.238 (6)	C8—C9	1.389 (3)
O6—N5	1.216 (3)	C9—C10	1.375 (3)
O7—N5	1.225 (3)	С9—Н9А	0.9500
O8A—N6	1.235 (10)	C10—C11	1.374 (4)
O8—N6	1.225 (6)	C10—H10A	0.9500
O9A—N6	1.224 (10)	C11—C12	1.358 (4)
O9—N6	1.270 (6)	C11—H11A	0.9500
O10—C27	1.244 (2)	C12—H12A	0.9500
O11—N7	1.224 (3)	C13—C14	1.386 (3)
O12—N7	1.222 (3)	C13—C18	1.389 (3)
O13—N8	1.130 (10)	C14—C15	1.388 (3)
O13A—N8	1.309 (7)	C14—H14A	0.9500
O14—N8	1.419 (12)	C15—C16	1.385 (3)
O14A—N8	1.152 (8)	C15—H15A	0.9500
N1—C5	1.475 (3)	C16—C17	1.387 (3)
N1—C4	1.480 (3)	C16—C19	1.506 (3)
N1—C1	1.511 (3)	C17—C18	1.386 (3)
N1—H1N	0.854 (16)	C17—H17A	0.9500
N2—C8	1.340 (3)	C18—H18A	0.9500
N2—C12	1.340 (3)	С19—Н19А	0.9800
N2—H2N	0.858 (17)	C19—H19B	0.9800
N3—C20	1.457 (3)	С19—Н19С	0.9800
N4—C22	1.451 (3)	C20—C25	1.368 (3)
N5—C24	1.448 (3)	C20—C21	1.448 (3)
N6—C26	1.445 (3)	C21—C22	1.447 (3)
N7—C28	1.454 (3)	C22—C23	1.367 (3)
N8—C30	1.444 (3)	C23—C24	1.386 (3)
C1—C2	1.509 (3)	С23—Н23А	0.9500
C1—H1A	0.9900	C24—C25	1.378 (3)
C1—H1B	0.9900	С25—Н25А	0.9500
C2—C3	1.497 (4)	C26—C31	1.376 (3)
C2—H2A	0.9900	C26—C27	1.439 (3)
C2—H2B	0.9900	C27—C28	1.449 (3)
C3—C4	1.467 (4)	C28—C29	1.369 (3)
СЗ—НЗА	0.9900	C29—C30	1.378 (4)
С3—Н3В	0.9900	C29—H29A	0.9500
C4—H4A	0.9900	C30-C31	1.382 (3)
C4—H4B	0.9900	C31—H31A	0.9500
05-06	1.501 (3)		
C5—N1—C4	115.6 (2)	C8—C7—C13	117.49 (17)
C5—N1—C1	111.42 (16)	N2—C8—C9	117.15 (19)
C4—N1—C1	105.67 (18)	N2—C8—C7	119.24 (17)
C5—N1—H1N	105.1 (16)	C9—C8—C7	123.55 (19)
C4—N1—H1N	109.6 (17)	C10—C9—C8	120.6 (2)
C1—N1—H1N	109.5 (16)	C10—C9—H9A	119.7
C8—N2—C12	123.00 (19)	С8—С9—Н9А	119.7

C8—N2—H2N	120.3 (17)	C11—C10—C9	119.9 (2)
C12—N2—H2N	116.6 (18)	C11—C10—H10A	120.0
02—N3—01	122.9 (2)	C9—C10—H10A	120.0
O2—N3—C20	119.6 (2)	C12—C11—C10	118.4 (2)
O1—N3—C20	117.4 (2)	C12—C11—H11A	120.8
O4—N4—O5	117.2 (4)	C10—C11—H11A	120.8
O4—N4—O5A	106.4 (6)	N2—C12—C11	120.9 (2)
O5—N4—O4A	131.5 (5)	N2—C12—H12A	119.5
O4—N4—C22	126.0 (3)	C11—C12—H12A	119.5
O5—N4—C22	114.8 (3)	C14—C13—C18	118.50 (19)
O5A—N4—C22	122.3 (4)	C14—C13—C7	119.56 (18)
O4A—N4—C22	112.1 (4)	C18—C13—C7	121.93 (19)
O6—N5—O7	123.3 (2)	C13—C14—C15	120.6 (2)
O6—N5—C24	118.2 (2)	C13—C14—H14A	119.7
O7—N5—C24	118.5 (2)	C15-C14-H14A	119.7
O9A—N6—O8	122.3 (4)	C16-C15-C14	121.3 (2)
O9A—N6—O8A	115.1 (8)	C16—C15—H15A	119.4
08—N6—09	114.8 (5)	C14—C15—H15A	119.4
O8A—N6—O9	123.6 (5)	C15—C16—C17	117.8 (2)
O9A—N6—C26	116.6 (5)	C15—C16—C19	121.0 (2)
O8—N6—C26	120.8 (4)	C17—C16—C19	121.2 (2)
O8A—N6—C26	117.9 (6)	C18—C17—C16	121.5 (2)
O9—N6—C26	118.5 (3)	С18—С17—Н17А	119.3
O12—N7—O11	123.8 (3)	C16—C17—H17A	119.3
O12—N7—C28	117.8 (3)	C17—C18—C13	120.4 (2)
O11—N7—C28	118.4 (2)	C17—C18—H18A	119.8
O13—N8—O14A	102.2 (4)	C13—C18—H18A	119.8
O14A—N8—O13A	123.8 (3)	С16—С19—Н19А	109.5
O13—N8—O14	119.2 (5)	С16—С19—Н19В	109.5
O13A—N8—O14	139.1 (4)	H19A—C19—H19B	109.5
O13—N8—C30	132.0 (5)	С16—С19—Н19С	109.5
O14A—N8—C30	125.0 (3)	H19A—C19—H19C	109.5
O13A—N8—C30	111.2 (3)	H19B—C19—H19C	109.5
O14—N8—C30	108.8 (3)	C25—C20—C21	124.0 (2)
C2-C1-N1	104.05 (19)	C25—C20—N3	116.41 (19)
C2—C1—H1A	110.9	C21—C20—N3	119.58 (19)
N1—C1—H1A	110.9	O3—C21—C22	124.4 (2)
C2—C1—H1B	110.9	O3—C21—C20	124.0 (2)
N1—C1—H1B	110.9	C22—C21—C20	111.67 (19)
H1A—C1—H1B	109.0	C23—C22—C21	124.6 (2)
C3—C2—C1	105.7 (2)	C23—C22—N4	116.4 (2)
C3—C2—H2A	110.6	C21—C22—N4	119.0 (2)
C1—C2—H2A	110.6	C22—C23—C24	119.1 (2)
C3—C2—H2B	110.6	С22—С23—Н23А	120.5
C1—C2—H2B	110.6	С24—С23—Н23А	120.5
H2A—C2—H2B	108.7	C25—C24—C23	120.7 (2)
C4—C3—C2	107.6 (2)	C25—C24—N5	119.7 (2)
С4—С3—Н3А	110.2	C23—C24—N5	119.5 (2)
С2—С3—НЗА	110.2	C20—C25—C24	119.84 (19)

C4—C3—H3B	110.2	C20—C25—H25A	120.1
С2—С3—Н3В	110.2	С24—С25—Н25А	120.1
НЗА—СЗ—НЗВ	108.5	C31—C26—C27	124.6 (2)
C3—C4—N1	108.1 (2)	C31—C26—N6	116.4 (2)
C3—C4—H4A	110.1	C27—C26—N6	118.99 (18)
N1—C4—H4A	110.1	O10—C27—C26	125.50 (19)
C3—C4—H4B	110.1	O10—C27—C28	122.6 (2)
N1—C4—H4B	110.1	C26—C27—C28	111.73 (18)
H4A—C4—H4B	108.4	C29—C28—C27	124.0 (2)
N1—C5—C6	113.65 (19)	C29—C28—N7	117.4 (2)
N1—C5—H5A	108.8	C27—C28—N7	118.53 (19)
С6—С5—Н5А	108.8	C28—C29—C30	119.4 (2)
N1—C5—H5B	108.8	С28—С29—Н29А	120.3
C6—C5—H5B	108.8	С30—С29—Н29А	120.3
H5A—C5—H5B	107.7	C29—C30—C31	121.2 (2)
C7—C6—C5	122.0 (2)	C29—C30—N8	119.6 (2)
С7—С6—Н6А	119.0	C31—C30—N8	119.2 (3)
С5—С6—Н6А	119.0	C26—C31—C30	118.8 (2)
C6—C7—C8	119.40 (18)	С26—С31—Н31А	120.6
C6—C7—C13	122.81 (18)	C30—C31—H31A	120.6
C5—N1—C1—C2	-155.6 (2)	O4A—N4—C22—C23	158.7 (12)
C4—N1—C1—C2	-29.3 (3)	O4—N4—C22—C21	-17.2 (10)
N1—C1—C2—C3	27.9 (3)	O5—N4—C22—C21	146.1 (4)
C1—C2—C3—C4	-16.3 (4)	O5A—N4—C22—C21	-167.7 (7)
C2—C3—C4—N1	-2.2 (4)	O4A—N4—C22—C21	-20.9 (13)
C5—N1—C4—C3	143.4 (3)	C21—C22—C23—C24	2.3 (4)
C1—N1—C4—C3	19.7 (4)	N4—C22—C23—C24	-177.2 (2)
C4—N1—C5—C6	59.3 (3)	C22—C23—C24—C25	-0.1 (3)
C1—N1—C5—C6	179.9 (2)	C22-C23-C24-N5	176.9 (2)
N1—C5—C6—C7	-168.2 (2)	O6—N5—C24—C25	-179.8 (2)
C5—C6—C7—C8	-168.2 (2)	O7—N5—C24—C25	1.5 (3)
C5—C6—C7—C13	5.4 (4)	O6—N5—C24—C23	3.1 (4)
C12—N2—C8—C9	-0.1 (3)	O7—N5—C24—C23	-175.6 (2)
C12—N2—C8—C7	-177.3 (2)	C21—C20—C25—C24	1.7 (3)
C6—C7—C8—N2	-151.8 (2)	N3-C20-C25-C24	-179.20 (19)
C13—C7—C8—N2	34.2 (3)	C23—C24—C25—C20	-1.8 (3)
C6—C7—C8—C9	31.2 (3)	N5-C24-C25-C20	-178.9 (2)
C13—C7—C8—C9	-142.8 (2)	O9A—N6—C26—C31	3.5 (6)
N2—C8—C9—C10	0.4 (3)	O8—N6—C26—C31	177.4 (4)
C7—C8—C9—C10	177.5 (2)	O8A—N6—C26—C31	146.8 (5)
C8—C9—C10—C11	-0.8 (4)	O9—N6—C26—C31	-31.1 (4)
C9—C10—C11—C12	0.8 (4)	O9A—N6—C26—C27	-179.2 (5)
C8—N2—C12—C11	0.1 (4)	O8—N6—C26—C27	-5.2 (5)
C10-C11-C12-N2	-0.5 (4)	O8A—N6—C26—C27	-35.9 (6)
C6-C7-C13-C14	-105.8 (3)	O9—N6—C26—C27	146.2 (4)
C8—C7—C13—C14	67.9 (3)	C31—C26—C27—O10	170.8 (2)
C6—C7—C13—C18	73.2 (3)	N6—C26—C27—O10	-6.3 (3)
C8—C7—C13—C18	-113.0 (2)	C31—C26—C27—C28	-4.7 (3)
C18—C13—C14—C15	1.0 (3)	N6-C26-C27-C28	178.24 (19)

-179.9 (2)	O10-C27-C28-C29	-168.8 (2)
-0.5 (4)	C26—C27—C28—C29	6.9 (3)
-0.7 (3)	O10-C27-C28-N7	11.0 (3)
178.8 (2)	C26—C27—C28—N7	-173.36 (18)
1.6 (3)	O12—N7—C28—C29	30.3 (3)
-178.0 (2)	O11—N7—C28—C29	-147.8 (2)
-1.2 (3)	O12—N7—C28—C27	-149.5 (2)
-0.1 (3)	O11—N7—C28—C27	32.4 (3)
-179.2 (2)	C27—C28—C29—C30	-5.1 (3)
157.6 (2)	N7-C28-C29-C30	175.1 (2)
-21.4 (3)	C28-C29-C30-C31	0.5 (3)
-23.2 (3)	C28—C29—C30—N8	-178.6 (2)
157.8 (2)	O13—N8—C30—C29	-19.7 (7)
179.8 (2)	O14A—N8—C30—C29	172.0 (4)
0.7 (3)	O13A—N8—C30—C29	-7.8 (4)
0.3 (3)	O14—N8—C30—C29	163.1 (4)
-178.81 (19)	O13—N8—C30—C31	161.1 (6)
178.2 (2)	O14A—N8—C30—C31	-7.1 (5)
-2.3 (3)	O13A—N8—C30—C31	173.1 (3)
-2.3 (3)	O14—N8—C30—C31	-16.0 (5)
177.22 (19)	C27—C26—C31—C30	0.8 (3)
162.4 (10)	N6-C26-C31-C30	177.9 (2)
-34.3 (5)	C29—C30—C31—C26	1.6 (3)
11.9 (7)	N8-C30-C31-C26	-179.3 (2)
	$\begin{array}{c} -179.9\ (2)\\ -0.5\ (4)\\ -0.7\ (3)\\ 178.8\ (2)\\ 1.6\ (3)\\ -178.0\ (2)\\ -1.2\ (3)\\ -0.1\ (3)\\ -0.1\ (3)\\ -179.2\ (2)\\ 157.6\ (2)\\ -21.4\ (3)\\ -23.2\ (3)\\ 157.8\ (2)\\ 179.8\ (2)\\ 0.7\ (3)\\ 0.3\ (3)\\ -178.81\ (19)\\ 178.2\ (2)\\ -2.3\ (3)\\ 177.22\ (19)\\ 162.4\ (10)\\ -34.3\ (5)\\ 11.9\ (7)\end{array}$	-179.9(2) $010-C27-C28-C29$ $-0.5(4)$ $C26-C27-C28-C29$ $-0.7(3)$ $010-C27-C28-N7$ $178.8(2)$ $C26-C27-C28-N7$ $1.6(3)$ $012-N7-C28-C29$ $-178.0(2)$ $011-N7-C28-C29$ $-1.2(3)$ $012-N7-C28-C27$ $-0.1(3)$ $011-N7-C28-C29-C30$ $157.6(2)$ $N7-C28-C29-C30$ $-23.2(3)$ $C28-C29-C30-C31$ $-23.2(3)$ $C28-C29-C30-C29$ $179.8(2)$ $014A-N8-C30-C29$ $0.7(3)$ $013-N8-C30-C29$ $0.7(3)$ $013-N8-C30-C29$ $0.7(3)$ $013A-N8-C30-C29$ $-178.81(19)$ $013-N8-C30-C31$ $-2.3(3)$ $014-N8-C30-C31$ $-2.3(3)$ $014-N8-C30-C31$ $177.22(19)$ $C27-C26-C31-C30$ $162.4(10)$ $N6-C26-C31-C30$ $-34.3(5)$ $C29-C30-C31-C26$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1N…O10	0.85 (2)	1.89 (2)	2.701 (2)	157 (2)
N1—H1N…O8	0.85 (2)	2.44 (2)	3.053 (7)	129 (2)
N1—H1N···O8A	0.85 (2)	2.57 (2)	3.173 (10)	128 (2)
N2—H2N···O3	0.86 (2)	1.85 (2)	2.648 (2)	153 (2)
C31—H31A···O11 ⁱ	0.95	2.58	3.520 (3)	170.
С9—Н9А…О11	0.95	2.47	3.174 (3)	131.
C5—H5B···O3 ⁱⁱ	0.99	2.44	3.362 (4)	154.
C5—H5A···O13A ⁱⁱⁱ	0.99	2.47	3.399 (6)	157.
C4—H4A…O14A ^{iv}	0.99	2.33	3.116 (7)	136.

Symmetry codes: (i) -x+1/2, y-1/2, -z+1/2; (ii) -x+3/2, y-1/2, -z+1/2; (iii) x+1/2, -y+1/2, z-1/2; (iv) -x+1/2, y+1/2, -z+1/2.

